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The primary and secondary distribution of  current densities at the anode and cathode in an amalgam 
electrolyser with activated titanium anodes was obtained by solving Laplace's equation by the finite 
element method. The calculated data were used for evaluation of  the decrease of  the active layer of  
RuO2 around the anode. The results are compared with literature data. 
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interelectrode distance (cm) 
constants in Tafel equation (V) r 
height of the electrolyte level above anode 2s 
(cm) t 
constant u, v 
equilibrium potential (V) U 
total current per wire (A) Up 
current referred to unit length (A cm -1) w 
current density (A cm -2) x, y 
current density referred to unit area of 
projection of the anode into the cathode q 
(A cm -2) ~t 
anode length (cm) 0E 
quantity of Ru in active layer around the ~0 
anode per unit surface area (g cm -2) q~ 

system matrix Subscripts 
vector of outer normal (cm) 
components of unit normal vector (cm) 
basis functions 

1. Introduction 

Amalgam electrolysers with activated titanium anodes 
are commonly used in the electrolysis of alkali metal 
chlorides. The activated Ti anodes are represented by 
a number of parallel wires arranged at given distances. 
Knowledge of the distribution of current densities 
around the wires permits determination of the decrease 
of the active layer at any point. The calculation of the 
distribution of current densities and total current 
passing through the electrolyser at various distances 
between the anode and cathode and between the wires 
can give information about the efficiency of the elec- 
trolysis and about the utilization of the active layer for 
various electrolyser geometries. 

This problem has been dealt with by several authors 
with different results. For example, the solution pre- 
sented by Kubasov et al. [1] is semiempirical and dis- 
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constants in equation of parabola 
rate of decrease of Ru in active layer 
(gcm 2 h-i)  
anode radius (cm) 
distance between anodes (cm) 
time (hour) 
local coordinate system (cm) 
terminal voltage (V) 
voltage drop in electrode body (V) 
weight function 
Cartesian (global) coordinates (cm) 
angle 
overpotential (V) 
Ludolf number 
resistivity of electrolyte (f2 cm) 
potential (V) 
dimensionless parameter 

A - anode, C - cathode 
Superscripts N - newly calculated value, 

s - iteration step 

continuous around the circumference of the wires. 
Lou6ka et al. [2] derived a continuous solution based 
on a model of a single anode wire and an infinite plane 
cathode. This solution represents only a rough estimate. 

The aim of the present work is to compare the 
results [2] with a numerical solution of Laplace's 
equation for a real case taking the influence of neigh- 
bouring wires into account. This can be done by 
several methods [3]. We preferred the method of 
finite elements, which is recommended for com- 
plicated geometries and which partly eliminates some 
disadvantages Of the finite difference and classical 
variational methods. 

2. Experimental details 

A cross section of an amalgam electrolyser with acti- 
vated Ti anodes is shown schematically in Fig. 1. The 
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Fig. 1. Schematic cross-section of  
an amatgam electrolyser with acti- 
vated Ti anodes. Distance between 
cathode and anode is denoted as a, 
origin of  x, y coordinates P. 

activated Ti anode consists of a number of parallel 
wires of radius r and length l whose mutual distance is 
2s. The distance between the cathode and the wires 
(measured at their lowest points) is considered as the 
interelectrode distance, a. We assume that the com- 
position (and hence also the density and resistivity) 
of the electrolyte is constant throughout its whole 
volume. 

The problem can be considered as two-dimensional 
since the properties of the system are constant along 
the axis parallel to the wires. The origin of coordinates 
is at the point P, the x axis lies in the cathode surface, 
and the y axis passes through the anode centre. For 
further simplification, we take into account the sym- 
metry axis of two neighbouring wires, shown by the 
dashed line in Fig. 1. Since the properties of the system 
with a homogeneous medium must be symmetrical 
with respect to every geometrical symmetry axis, both 
the dashed line and the y axis have the properties of an 
insulating wall, on which Oq)/~n = 0, where n denotes 
the coordinate normal to the given surface. The 
solution of the problem is then reduced to calculation 
of the potential distribution on a region delimited by 
both symmetry axes, followed by calculation of the 
current densities at the electrodes. 

The distribution of potential, ~o, is obtained by 
solving Laplace& equation 

c~2~o 8qo 2 
63X2 -1- a y  2 - -  0 (1) 

The individual distances are shown in Fig. 2 (the 
electrolyte level is at distance c above the anode) 
together with boundary conditions, the Galvani poten- 
tial of the electrolyte near the anode (cathode) is 
denoted as ~0a ((PC). 

TO solve Equation (1) by the finite element method, 
the integration domain is divided into subdomains 
called finite elements. The solution in each of them 
is approximated by the same function; this is favour- 
able for assembling a general programme for the sol- 
ution of this type of problem. Isoparametric parabolic 
elements were chosen, since they are suitable for 
domains with curved boundaries. A transformation 
can be introduced, which permits passing from the 
.global coordinate system (x, y) to a new one (u, v), in 
which each element is transformed to a square with 
Lhe centre at the origin of coordinates and side length 
equal to 2 (Fig. 3). The splitting of the integration 
domain into finite elements is illustrated in Fig. 4. The 
division is more detailed at the electrodes, where the 
potential drop is highest. 

In the finite element method, we do not solve 
Equation (1) directly, but instead we seek a function 
that minimizes the function corresponding to it, or a 
function that satisfies the formulation of the problem 
obtained by the weighted residual method. The latter 
is used here. We require that the weighted integral of 
the residue be equal to zero, hence that the residue be 
orthogonal on the domain f~ with respect to any 
weight function w, i.e. 

J a \ ~  + ~ ]u 'd f~  = 0 (2) 

The potential cp(x, y) in every finite element is app:roxi- 
mated by using the potential values at the nodes, ~oi, 
and basis functions, N,(u, v), as 

8 

~0(x, y) = ~ U~(., v)~, (3) 
i=1 

The basis function for a square with side length 2 in 
the local coordinate system (u, v) can be written as 

N/ = (1 + uui)(1 + vvi)(uui + vvi - 

N, = (1 - u2)(1 + vv i ) / 2  

Ni = (1 - v2)(1 + uu,)/2 

1)/4 i =  1-4 

i = 5 , 7  

i = 6 , 8  

(4) 
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Fig. 2. Integration domain with boundary conditions. ((p,~ ~ (Pc) 
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Fig. 3. Parabolic isoparametric element with local indices (1 8) in 
the global (x, y) coordinate system and after transformation to the 
local (u, v) one. 

where u~, vi denote local coordinates of the nodal 
point. 

In Galerkin's method, the basis functions N~ serve at 
the same time as weight functions. To lower the order 
of the derivatives in Equation (2), we use Green's 
theorem for integration by parts of functions of more 
than one variable [7] 

(s) 
Here, the second term need be considered only at the 
boundary, where nonessential (natural) boundary 
conditions are prescribed. Since in our case &p/On = 0 
at these boundaries (Fig. 2), the second integral is 
equal to zero and Equation (5) takes the form 

f l  n Ox Ox + ----~y j dx = 0 (6) 

Here, the potential ~0 is approximated by Equation 
(3); since the values of q~i are constant in a chosen 

Y 
(crn) 

0,6 
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/ / \ \  
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0 0,1 0,2 x ['cm) 
Fig. 4. Division of the integration domain into finite elements. 

element, we obtain 

~] q , , j jnkU ~ ~ +----~y,/dx@ = o 
i= t 0y (7) 

j = l - 8  

By combining for the whole region ~, we obtain a 
system of  linear equations, which can be written in the 
matrix form 

Mq~ = 0 (8) 

where M denotes the matrix of the system and q~ is the 
vector of  unknown potential values at the nodes 
(xi, Yi). The transformation from the local (u, v) to 
global (x, y) coordinates is given as 

8 8 

x = ~ Ni(u,v)xi,  y = ~ Ni(u,v)yi  (9) 
i= l  i-1 

and its uniqueness is secured by the determinant of 
Jacobi's matrix being different from zero. This deter- 
minant is used in calculating the derivatives of the 
basis functions with respect to global coordinates. 
Equation (7) is integrated numerically with the aid 
of  Gauss quadrature formula for 3 x 3 points. The 
values of  the integrals are stored in the matrix of 
the corresponding element and this in turn is used to 
assemble the matrix of the system. The problem is thus 
reduced to the solution of a system of linear equations, 
which are stored in a reduced form in which the zero 

terms are omitted. The system was solved by the 
successive over-relaxation method [8]. 

The potential values in elements adjacent to the 
electrodes are used in calculating the distribution of 
the current density j at the boundary. We have 

1 ~q~ 
j - (10) 

~s On 

where Os is the resistivity of the electrolyte and n the 
coordinate normal to the boundary. For  the cathode, 
the calculation is simple, since the normal is parallel to 
the y axis, hence the derivative in Equation (10) can be 
written as Oq~/Oy. The anode surface, which is circular 
in cross section, is approximated in the elements by 
parabolae so that the nodes laying at the apexes of the 
quadrangles are placed on a circle of radius r and the 
nodes in the middle of each side have the smallest 
distance from the circle. The approximation by par- 
abola y = -  plx  2 + p2 x + P3 is also suitable for the 
determination of the components of the unit normal 
vector passing through a point x0: 

nx = (P2 + 2plxo)/[1 + (P2 + 2plXo)2] 1/2 
(ll) 

ny --- --[1 + (P2 + 2p, Xo)2] -'/2 

for p~ > 0. Equation (10) for the current density at 
point x0 at the anode then takes the form 

Oq~ ny)/Ps (12) 

It was found that the current densities calculated at 
the nodes were practically identical with those found 
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by extrapolation from the Gauss point inside the 
element [9], so that the former, simpler method would 
be used in further calculations. 

The total current is obtained by integration of 
Equation (10) over the electrode surface by means of 
Gauss three-point quadrature formula. For the planar 
cathode, the integration is simple. The integral over 
the arc of a parabola, e.g. between nodes whose 
x-coordinates are x~ and x3, gives the current,/~.A, per 
unit length of the anode 

= Ii~ij[1 -k- (P2 4- 2p, x)2l l /Zdx (13) 

The total current passing through one wire of length 
l is 

IA = /t,A l (14) 

The correctness of the calculation can be checked by 
comparing the current flowing through the anode with 
that flowing through the cathode; they should be 
equal 

~,~ = ~ , c  = I, ( 1 5 )  

In practice, the mean current density referred to unit 
area of the projection of the anode into the cathode is 
of importance: 

j ,  _ / n  _ / t ,A ( 1 6 )  
2(r + s) l  2(r + s) 

By combining Equations (12) and (16) we obtain the 
ratio o f j A / j *  , which characterizes the relative distri- 
bution of the current densities at the anode. The 
analogous ratio Jc/J*  can be derived for the cathode. 

The boundary conditions at the electrodes, i.e. 
potentials in the adjacent electrolyte layer depend on 
the total imposed voltage, U, on the equilibrium 
potentials EA, , and Ec,r, on the overpotential ~/A and ~/c 
associated with the electrode reactions, and on the 
ohmic potential drop in the electrode body, UA.p and 
Uc, ;.  We have 

(PA = U -  U A ,  p - -  EA,  r - -  r lA 

(17) 
{pc = Uc,p - Ec,r - 77c 

The values of the quantities are taken from the study 
of the voltage balance of an amalgam electrolyser with 
activated Ti anodes [10]. For a mean electrolyte tem- 
perature of 80 ~ C, mean brine concentration 290 g 1 ~, 
and mean concentration of the sodium amalgam 0.1% 
we obtain 

EA,,. = 1.288v 

E C ,  r = - -  1.753 V 

1/c = -0 ,02  + 0 .02jcV 

where jc is given in Acm -2. 

UA,p = 0 .07j*V 

Uc, = 0.007 j* V 

(18) 

The chlorine overpotential on the activated Ti 
anode can be approximated by the Tafel equation 

qA = A + B lOgjA (19) 

where the constants were found experimentally to be 

A = 0.1V, B = 0.05V for JA ~< 0.32Acre-z, and 
A = B = 0.15V forjA > 0.32Acre -2. 

The resistivity 0e of the electrolyte depends on many 
factors including hydrodynamic conditions in the elec- 
trolyser, however it will be considered constant for the 
sake of  simplicity. 

First we deal with the primary distribution of 
current densities. This corresponds to the ideal case 
where the polarization of the electrodes is equal to 
zero (r/A = t/C = 0). We introduce a dimensionless 
parameter 

4, = (Ec,r - U c .  + ~o) / (U - C2,,, 

+ Ec.r - EA, r -- gc,p) (20) 

The boundary conditions are ~b A - 1, q~c = 0. The 
results obtained by the above-mentioned method will 
be compared with the solution [2] obtained for one 
wire (neglecting the influence of the other wires). This 
rough estimate [2] gives 

JA 2(r + s)[(r + a ) 2 / r  2 - 1] '/2 
- ( 2 1 )  

j*  27rr (r + a)/r  + sin ~ 

sinh rc[a(2r + a)] I/2 
Jc r + s  
- -  = (22) j*  rc[a(2r + a)] 1/2 rex 

cosh -- c o s -  
r + s  r + s  

where the meaning of coordinate x and angle c~ is 
illustrated in Fig. 1. The total current flowing through 
a wire is approximated as [2, 11] 

I = 2~(q~A - {pc) 
QE In [(1 + a/r)  + ((1 + a/r) 2 - 1) 1/2] 

(23) 

In the case of secondary current distribution, the 
electrode potential at a given point depends on the 
current density j. In the first step of numerical calcu- 
lation, we select values of the electrode potentials 
corresponding to equations (17) without overpoten- 
rials, calculate the current densities, and find the 
potential values Equation (17) using the equations 
for the overpotentials Equations (17) and (19). A 
proportional part of the (inner or Gatvani) potential 
at the nodal point at the electrode (on the electrolyte 
side) is taken as a new value for further step (s + 1); 

s+l N * (24) ~OA, C = C~OA, C + (1 - C)q)A,C 

The superscript N refers to the newly calculated 
potential from Equation (17), s denotes last iteration 
step, and C is an empirical constant which can change 
during the calculation (in our case C --- 0.05-0.2). 
Iteration proceeded until convergence was achieved 
with an error smaller than 5 x 10 .4  V. Provision was 
made to check whether the potential of the anode 
under current load was higher than its equilibrium 
potential. 

Gorodetskii et al. [12] studied the dependence of 
decrease of  the active layer of  Ru and Ti oxides on the 
current density and found the experimental relationship 

logq  = -7 .57  + 0.30 logjA (25) 
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Fig. 5, Primary distribution of current densities at the electrode surface for anode and cathode. Numbers denote c,d. in Acm -2 for 
r = 0.15 cm; s = c = 0.1 cm; 0e = 2.5 f~cm; values of interelectrode distance a: (a) 0.3 cm; (b) 0.2 cm; (c) 0.1 cm. Arrows indicate the 

location for given c.d. 

where q is the rate of  exhaustion of Ru in the active 
layer. Assuming q constant we obtain the following 
expression for the quantity, m, of Ru per unit surface 
area at time t 

m = m0 - 2-692.10-*jA0"36t (26) 

The program was assembled in F O R T R A N  and 
calculations were made on an ICL-4-72 computer. 
The region shown in Fig. 4 was divided so that the 
total number of elements was about 100-110. The 
calculation of the primary current distribution took 
about 50 sec of the computer time. 

3. Results 

The primary distribution of current densities was 
obtained for an electrolyser with anode wires 3 mm in 
diameter at various distances between the wires and 
between the electrodes. The height of the electrolyte 
level above the anode, c, was found not to influence 
the total cur ren t / ,  but to influence the local current 
density at the upper part of the wire surface. In a 
further calculation, we set c = 0.1 cm. The resistivity 
~E of the electrolyte-bubble mixture has no influence 
on the distribution of the relative current densities, 
JA/J*, and therefore its dependence on the interelectrode 
distance need not be considered. From the literature 
[10], its mean value is 0e = 2.5f~cm at 80~ brine 
concentration 290g l  -~ and for a = 0.3cm. This 
was used throughout in the calculation of primary 
distribution of current densities. 

Figure 5 shows the primary distribution of current 
densities at the electrodes for various interelectrode 
distances. The distribution ofjA/j* around the anode 
and its comparison with Equation (2l) neglecting the 

influence of neighbouring wires [2] is shown in Fig. 6. 
The distribution of relative current densities calculated 
by the finite element method is only slightly dependent 
on the interelectrode distance (other conditions being 
kept constant), whereas according to the approxima- 
tion [2] given by Equation (21) it should become more 
uniform with increasing distance. The mean current 
density per unit area of the projection of the anode 
into the cathode, j*,  is, in both methods of calcu- 
lation, different (Table 1). The dependence of anodic 
current density distribution on the distance between 
the wires, 2s, is shown in Fig. 7. It can be seen that the 
distribution becomes more nonuniform with increasing 
distance, since the current increases and j*  decreases 
as a result of the larger area of the projection of the 
anode into the cathode. Also here, the values of j*  for 
both methods of calculation are markedly different 
(Table 2). 

The variation of current at the mercury cathode is 
shown in Fig. 8 in comparison with approximation [2] 
given by Equation (22) for x changing from - (r + s) 
to r + s, which corresponds to the projection of the 
anode into the cathode. The primary distribution of 
current densities calculated numerically is more non- 
uniform than according to the estimate [2] given by 

Table l. Mean current density j*  referred to the area of projection of  
the anode into the cathode for various interelectrode distances (of 
Fig. 6) 

a, cm 0.1 0.2 0.3 0.4 
j*, Acre -2 (f.e. method) 2.85 1.65 1.17 0.90 
j*, Acre -z 4.58 3.37 2.86 2.55 

(approximation by 
Equations (16) and (23)) 
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Fig. 6. Primary distr ibution of  relative current  densities a round  
the anode wire at various interelectrode distances r = 0.15cm; 
e = s = 0.1 cm; Qz = 2.5f~cm; 1 ,1 ' a  = 0.1cm; 2 , 2 ' a  = 0.3cm. 
1,2 calculated by the finite element method,  1',2' approximat ion  
given by Equat ion (21). 

Equation (22). In a usual case (r = 0.15cm, s = 
0. I cm, a = 0.3 cm), the deviation of  the local values 
from the mean current density j*  is approximately 
1%. With decreasing interelectrode distance 2s, 
the distribution of  current densities becomes more 
nonuniform. 

The distribution of  Ru as function of time t 
was calculated from the current densities by using 
Equation (26) and the results are shown in Fig. 9. The 
decrease of the active layer is more nonuniform than 
calculated on the basis of  approximation given by 
Equation (21). 

Although the life time of the anode is determined 
not only by the decrease of the active layer but also by 
the formation of  a nonconducting TiO2 layer at the 
Ti-active layer interface, it can be defined for sim- 
plicity as the time after which the active layer on the 
lower part of  the wire surface (~ = -re/2)  is com- 
pletely removed. The life thus defined is about the 
same for both methods of calculation. However, the 
total charge passed through the electrode during its 
life time calculated by the finite element method is 
smaller, since the current, [ = 0.45 A cm ~, is lower 
than that calculated from the approximation given by 
Equation (23), I = 1.27Acm -I.  

The secondary current distribution was calculated 
for an electrolyser with wire anodes 3 mm in diameter, 
distance between the wires 2s = 0.2cm, height of  

Table 2. Mean current density j*  referred to the area of  projection of  
the anode into the cathode for various distances between the wire 
anodes (of Fig. 7) 

2s, cm 0.2 0.4 0.6 
j *, A cm - 2 (f.e. method)  1.17 1.07 0.98 
j* ,  A c m  -~ 2.86 2.04 1.58 
(approximat ion by 
Equat ions  (16) and (23)) 

2,0 -3 I T I 1 

1,0 

0 
~r 0 

Fig, 7. Primary distribution of relative current densities around the 
anode wire at various distances between the wires, r = 0.15cm; 
a = 0.3cm; c = 0 . t cm;  9E = 2.5f~cm; 1,1' s = 0.1cm; 2,2' 
s = 0.2cm; 3,3' s = 0.3cm; 1,2,3 calculated by the finite element 
method,  1',2',3' approximat ion  given by Equat ion  (21). 

electrolyte level above the wires c = 0.1 cm, and 
interetectrode distance a = 0.2 or 0.3 cm. The resis- 
tivity of the electrolyte-bubble mixture for brine, 
concentration 290 g 1-1 at 80~ can be expressed as 

0e = 1.836 - 0.2/a (.Qcm) (27) 

The terminal voltage of the electrolyser was set equal 
to 4.1V. The results are shown in Fig. 10 in terms of 
JA/J* around the anode and are compared with the 
primary current distribution. For  primary current 
density distribution the ratio JA/J* is independent of 
the value CpA- (PC and therefore the results for 
~bA = 1 and r = 0 could be used also for U = 4.1 V. 
As expected, the secondary distribution is more uni- 
form than the primary one and the ratio of. /a/ j* is 

1,2 

I 3' 3 f / - -_"_C.L'-_-  _'>.k 

0,8 

- 0,2 0 0,2 
xtcm} 

Fig. 8. Pr imary distr ibution of  relative current  densities at the 
cathode, r = 0.15cm; c = s = 0.1cm; ,o z = 2.5flcm; 1,1' a = 
0.1 cm; 2,2' a = 0.2cm; 3,3" a = 0.3cm; 1,2,3 calculated by the 
finite element method,  1',2',3' approximat ion  given by Equat ion  
(22). 
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Fig. 9. Distr ibut ion of  Ru  a round  the wire anode according to 
Equat ion (26). r = 0.15cm; s = c = 0 . l cm;  a = 0.4cm; Qe = 
2 .5~cm;  rn 0 = 10 3 g c m - 2 ;  1,1' t = 104h; 2,2' t = 2.104h; 3,3' 
t = 3.104 h; 1,2,3 current  density calculated by the finite element 
method;  1',2',3' approx imat ion  given by Equat ion  (21). Primary 
current  density distribution. 

only slightly dependent on the interelectrode distance 
(at constant distance between the wires 2s). 

The correctness of  the results can be judged on the 
basis of  the literature data [10]. The terminal voltage 
of a pilot scale 22 kA electrolyser SCR-22 at 80 ~ C can 
be expressed as 

U = 3.105 + (0.415 + 1.8a)j* (28) 

(brine concentration 290 g 1 - ~, amalgam concentration 
0.1%). For  U = 4.1V, a = 0.2cm (Qe = 2.84f~cm) 
or 0.3 cm (~E = 2.5 f~cm), we find the current density 
j*  from Equation (28), f rom the numerical solution by 
the finite element method (primary and secondary 
current distribution), and from the estimate given by 
Equations (16) and (23) with respect to electrode 

I I l 

P 

1, 0 

0,5 

0 I I 

_'rr 0 
2 0~ 2 

Fig. 10. Distr ibut ion of  relative current  densities a round  the anode 
wire calculated by the finite element method,  r = 0.15cm; s = 
c = 0.1cm; U = 4 . IV;  1,1' a = 0.2cm; Pe = 2.85f~cm; 2,2' 
a = 0.3 cm; qE = 2.5 ~cm; 1,2 secondary distribution; l ' ,2 '  pr imary 
distribution. 

polarization and the published data [10]. The calcu- 
lation of j*  by the finite element method for U = 4.1 V 
and for pr imary current distribution was carried out 
using the following procedure. For  a = 0.2cm, 
OE = 2.84f~cm and pr imary current distribution we 
obtained, by solving Laplace's equation for a 1 V 
potential drop between anode and cathode ( (PA-  
(Pc = 1V) , j*  = 1.456Acre -2. From Equations (17) 
and (18) for ~ n  = ~C  ~ 0 w e  obtain 

(PA - -  (PC = 1.059 - 0 . 077 j*  (29) 

Then 

j*  = 1.456 (1.059 - 0.077j*) (30) 

which gives j*  = 1 .39Acm -2. The potential drop 
between anode and cathode from Equation (29) is 
(PA - -  (PC = 0.952V. 

The same procedure was carried out for a = 0.3 cm 
and QE = 2.5 f~cm. For  (PA - (pc = 1 V the current 
density j*  = 1.168 A c m  2 and from Equation (29) we 
have 

j*  = 1.168 (1.059 - 0.077j*) (31) 

In this case j*  = 1.14 A cm -2 and (PA -- (PC = 0.971 V. 
For the estimate of  j*  for U = 4.1V and for the 

secondary current distribution from Equations (16) 
and (23) we must take into account the overpotentials 
t/A and ~/c. They are given in [10] by 

r/A --- 0.051 + 0.106j* 
(32) 

r/c --- - 0 . 0 2  - 0.02j* 

From Equations (17) we then obtain 

(PA -- (PC = 0.988 -- 0.203j* (33) 

By combining Equations (23), (16) and (33) we obtain 
for a = 0.2cm, j*  = 1.83 Acre  2 (the potential drop 
between anode and cathode (PA -- (Pc = 0.617 V) and 
for a = 0.3 cm,j*  = 1.79 A c m  -2 ((PA -- (PC = 0.626V). 
All these results are summarized in Table 3. 

From Table 3 it follows that the values of  mean 
current densities ( j * )  obtained experimentally [10] 
agree approximately ( +  10%, - 15%) with the values 
computed by the finite element method for primary 
and secondary current distribution. The values of  
mean current densities ( j * )  calculated according to 
the approximation using Equations (16) and (23) with 
polarization o f  electrodes are much higher ( +  40%, 
+ 8 0 % )  than the experimental values or values 
calculated by the finite element method. 

Table 3. Mean current density j*  for various interelectrode distances 
(see text for details) 

a, cm 0.2 0.3 
j* ,  Ac re  -2 (Eq. (28), experiment [10]) 1.28 1.04 

j* ,  Ac re  -2 (f.e. method,  pr imary 1.39 1.14 
current  distribution) 
j* ,  A c m  -2 (f.e. method,  secondary 1.12 0.94 
current  distribution) 
j* ,  A cm -2 (approximat ion  by 
Equat ions  (16) and (23) with 1.83 1.79 

polarization of  electrodes) 
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Fig. 11. Distribution of Ru around the wire anode according to 
Equation (26). r = 0.15cm; s = c = 0.lcm; a = 0.3cm; ~E = 
2.5~cm; m 0 = 10-3 gcm-2; U = 4.1V; 1,1",1" t = I04h; 2,2",2" 
t = 2.104 h; 3,3',3" t = 3.104 h; 1,2,3 using the secondary distri- 
bution of current densities calculated by the finite element method; 
1',2',3' using the primary distribution calculated by the finite element 
method (~o A -~0 c = 0.971 V); 1",2",3" using current densities 
according to the approximation given by Equation (2I) involving 
polarization of electrodes (q~A -- (Pc = 0.626 V). 

Since an equat ion o f  the local anodic  polarizat ion 
curve for the pilot-scale electrolyser used was not  
available, the overpotential  was approximated  by the 
Tafel equat ion (19) obtained f rom measurements  on 
labora tory  electrodes. Its values are higher than for 
the pilot-scale electrolyser, hence the values o f  j *  are 
somewhat  too  low. 

The secondary distribution o f  current densities 
a round  the anodes  can be used to calculate the distri- 
but ion o f  ruthenium as function o f  time as in the 
preceding case. The results are shown in Fig. 11, where 
the distributions o f  R u  calculated f rom the pr imary 
current  distr ibution ((PA -- (PC = 0.971 V) and the 
approximat ion  given by Equat ion  (21) involving elec- 
trode polarizat ion (~Oa-  ( P c - - 0 . 6 2 6 V )  are also 
shown for comparison.  The curves are in accord with 
the above conclusion. The distribution o f  R u  in the 
active layer calculated f rom the pr imary current 
distribution is very nonuniform.  At  the lowest par t  o f  

the wire surface (e = - re /2 )  the current  densities 
f rom the secondary distribution and f rom Equat ion  
(21) involving polar izat ion o f  the electrodes are the 
same, hence the calculated Ru  content  at this place 
must  also be the same. 

4. Conclusions 

The distribution o f  current densities a round  the 
activated Ti wire anodes in a brine electrolyser was 
calculated by the finite element method  and it was 
found to be influenced appreciably by the distance 
between the wires. The previous solution [2] o f  the 
Laplace equat ion a round  the wire, neglecting the 
effect o f  neighbouring wires, does not  give reliabie 
results because the calculated current densities referred 
to unit area o f  the projection o f  the anode onto  the 
cathode are in this case much higher compared  to a 
real system [10] and to the calculated values based 
on the finite element method.  The results obtained 
by the finite element method  are in agreement  with 
measurements  on a pilot-scale electrolyser [10]. 
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